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Abstract The linearized relativistic Vlasov-Maxwell system for a hot inhomogeneous relativistic 
magnetized electron plasma is stndied through particle orbit theory using the techniques of Fourier 
aansfom. An analytical integral expression in the (k, w)-spaceisobtainedforthecurre~&nsity for 
waves propagating across an exemally applied uniform static magnetic field (k is the wavenumber 
and w is the wave frequency). After applying inverse Fourier vansfom diffeRntial equations for 
the elechic field are obtained from Ihe expression for the current density combined with Maxwell’s 
equatious. These fully relativistic equarions are corm3 up to second order in rJL. where r, is the 
electron gyroradius and L is the gradient length of the plasma inhomogeneity. 

1. Introduction 

The theory of wave propagation in inhomogeneous hot plasmas is of great practical interest. 
In nuclear fusion research, for example, the possibilities of heating a plasma by launching an 
electromagnetic wave are investigated. 

So far, most theoretical studies have been concerned with wave propagation in 
homogeneous magnetoplasmas or in inhomogeneous plasmas in the WKB approximations. 

In the study of inhomogeneous hot plasmas Pearson (1966) investigated the propagation 
of radial electrostatic modes in a plasma column immersed in an axial static magnetic field and 
developed a set of differential equations for the wave field that is correct up to first order in 
rJkl (r, is the electron gyroradius, k is the wavenumber). Sivasubramanian and Tang (1972) 
have derived an integral equation for the wave fields in an unbounded inhomogeneous non- 
relativistic magnetoplasma. Similarly to Pearson they used particle orbit theory, but unlike 
Pearson, who used a power-series expansion in the spatial coordinates before the velocity 
integrations were carried out, they first made a direct Fourier transform and expanded the 
result into a power series in r,lkl afterwards. Neither Pearson (1966) nor Sivasubramanian 
and Tang (1972) considered relativistic effects. Later h e  and Weitzner (1985a. b, c) studied 
wave propagation in a weakly relativistic plasma near the fundamental electron cyclotron 
resonance and near the second harmonic. Using geometrical optics and boundary layer theory 
they derived dispersion relations and absorption coeEcients. Recently, M m l i  et al(1986) 
and Petrillo etol(l987) have done extensive research on the wave-dynamical treatment of the 
ordinary electron cyclotron mode, taking relativistic effects into account for a specific density 
and magnetic field profile. In our work we consider an arbitrary density profile and a slowly 
varying magnetic field and we derive a fully relativistic analytical integral expression for the 
current density. This result is expanded up to first order in r c / L  afterwards (15 is the gradient 
lengfh of the plasma). 

In section 2 we will treat particle orbit theory in the relativistic case and derive an integral 
expression for the current density. In section 3 we will Fourier transform and apply some 
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elementary asymptotics to derive an expansion of the current density, which then leads to 
differential equations for the perturbed electric field. 

M J van Bruggen-Kerkhof et a1 

2. Orbit theory 

We consider a relativistic, colliiionless plasma contained in a fairly strong homogeneous 
magnetic field Bo. It is assumed that its spatial variation can be neglected compared to the 
spatial variation of the particle density. Being interested in high-frequency perturbations, only 
the motion of the electrons is of importance. Furthermore it is assumed that the zeroth-order 
elechic field can be neglected. We restrict ourselves to the case of propagation perpendicular to 
the static magnetic field and furthermore we consider wave propagation parallel to the electron 
density gradient. The coordinate system is chosen such that BO lies along the positive z-axis 
and the inhomogeneity exists only in the x-dmction. The relativistic Vlasov equation for the 
electron momentum distribution function f is 

where 

and 

The vector fields E and B denote the electric and magnetic fields, respectively, and m is the 
electron rest mass. The other symbols have their usual meanings. 

Theequilibrium solution fo is found by solvingthe unperturbed relativistic Vlasovequation 

(5) 
1 

P' vfo - ; ( P A  a). vpfo  = o  

where the non-relativistic cyclotron frequency is given by 

a:=-. m 

Any zeroth-order solution fo of (5) is a function of the integrals of motion only (see ag .  
Clemmow and Dougherty (1990)). This means 

fO& P) = FO(P9 x 9  PO) U) 
where 
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= &. p11 is the component of p that is parallel to the magnetic field BO. In the present case 
The equilibrium distribution function fo is chosen to be of the form 

with 

where KB is Boltzmann’s constant, T is the electron temperature and Kz is the modified Bessel 
function (Magnus er aZl966) of the second kind and of order two. The function h is related 
to the spatial variation of the density, the other part of f o  is the relativistic Maxwellian (Synge 
1957). 

In the present paper we will not elaborate on the precise form of the function h. For that 
we refer to Kamp et al(l992) who have studied several onedimensional Vlasov-Maxwell 
equilibria and the conditions under which charge separation and thus zeroth-order electric 
fields are negligible or even completely absent, as is presently presumed. 

The equation for the perturbed electron momentum distribution function f1 can be written 
as 

where the total derivative on the left-hand side of (1 1) denotes the time derivative along the 
unperturbed electron orbits, that are identical with the characteristics of (1). The vector fields 
El and B1 denote the perturbed electric and magnetic fields, respectively. We assume that the 
electromagnetic field vanishes at t = -ea and consistently f1 0 at r = -m. The solution 
of (1 1) is then given by 

f i ( z ( t ) ,  p(t)) = fi(z(z0, PO, t ) ,  p(z0, PO, t ) .  t )  

‘’(‘’) A Bl(z(t’), t‘) . Vo fo(z(t’), p(t’)) . 
(12) 

The function f1 depends on z(t) and p(t). The current density J in the point (z, t) is found 
by integrating fi multiplied by the relativistic electron velocity and by the Dirac delta-function 
S(z - z(t ) )  (in order to evaluate J at the right point) over all possible initial positions zo and 
momenta pa at t = -w. Thus we have (see Shai3anov (1967)) 

I = e sr dt’(E1(z(tf), f’) + - 
mc -* Y 
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Because the inhomogeneity exists only in thex-direction, the yo- and a-integrations are trivial. 
To perform the xo-integration we use the relation 

M J van Bruggen-Kerkhof et al 

xo = ~(101 PO, t )  - d r  ~ x ( z o ,  PO, r ) .  (14) 

Performing thexo-integration leads to evaluation of this expression in x ( t )  = x .  Thus we have 
t 

xo = x - d r  p,(s). (15) Y --m 

This leads to the following relation between x(f ' )  and x :  

x@' )  = xo -I- - d r  &(r)  = x - 
Y s" -m 

So we have for J I  

where e, is the unit vector in the y-direction. 

3. Fourier transform of the current density 

In this section the Fourier transform of the current density is performed. Thus, an integral 
expression is obtained, which is expanded up to second order in rJL. Then the inverse 
Fourier transform of the current density combined with Maxwell's equations gives us a set of 
differential equations for the perturbed electric field. The one-dimensional Fourier transform 
both in space and in time variables of a function @ is defined by 

m m 
4(k,o)  := L/ 2n -m d texp( iwf )S__brexp( - ikx )@(x , t ) .  (18) 

To avoid an abundance of notation the Fourier transform and the function itself are both denoted 
by 4. The argument shows whether the function or its Fourier transform is meant. The Fourier 
transform of J is given by 
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Because p and po are independent of x and the function h is time independent, the order of 
some of the integrations can be interchanged. This yields 

First we calculate the integral 
m m 

dx exp(-ikx)h(X)E1(x(t'), f'] = l m d x  exp(-ikx)h")(x)E~)(x, t') 
S_m 

(21) 

with 

h'"(x) := h(X) El"(x. t') := El(X(t'), t'] (22) 

According to the convolution theorem for the Fourier transform (Sneddon 1951) we find for 
the right-hand side of (21) 

m m 
dx exp(-ikx)h")(x)E,'"(x, t') = dk'h"'(k - k')Ei ' ) (k' ,  t') (23) 

with 
m 

dx exp(-i(k - k' )x]h")(x)  
1 

h"'(k - k') - 

I = h(k - k ' )  exp -i-(k - k')p,(t) I :  

In this way the following expression is obtained for J I :  

t1 C 

Y 
El#', f') - -El&', t') . (26) 
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Here we have used tensor notation (i, j = x ,  y,  z )  and the Einstein convention (repeated 
indices denote summation). In appendix A the various components of the current density are 
calculated. The following expression is obtained: 

M J van Bruggen-Kerkhojet a1 

I r2  
f & y $ ( K  - K’)’ng(K - K ’ ) E l y ( K ’ ,  0 )  

with 

0 

in which the function f!) is given by 

0 

HereK = kL, K ‘  = k‘L, U = r;KK‘/L’ and&? is the Kroneckerdelta. The functionCF’+t) is 
the Gegenbauer polynomial (Magnus etal 1966) and the function Fm+lnl+,(p, nQ/o) is the 
relativistic dispersion function (Bornatici and Ruffina 1988) defined by 

In appendix B some properties of the function 3q are presented. 
In the limit L + 00 the elements of the tensor Rij still exist and coincide with the 

cold-plasma limit. The non-relativistic limit of pF,,(p, nQ/w) (i.e. p + 00) is equal to 
(1 -nQ/w)- ’  and the non-relativistic limit of (~/2p)’ /~exp(-p) /Kz(p)  i s  unity. Therefore 
the non-relativistic limit off!) reads 

Using the following summation formula for the Gegenbauer polynomial (Magnus eral1966): 

expression (31) results in 

where In is the modified Bessel function (Magnus E? a/ 1966) of the first kind and of order n. 
The results described by Sivasubramanian and Tang (1972) are thus recovered. 
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4. Small gyroradius approximation 

In this section the elements of the tensor R as defined in section 3 are expanded up to second 
order in rc /L .  Using this expansion for the tensor R, the inverse Fourier transform of the 
current density can be carried out and subsequent substitution of the result in the Maxwell 
equations yields the following set of fully relativistic differential equations for the electric 
field. Two coupled second-order differential equations for the X-mode and one second-order 
differential equation for the 0-mode, namely 

where the non-zero elements of the tensor operators XI and X2 are given by 
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5. Oblique incidence, perpendicular to the magnetic Eeld 

In this section we consider a similar geometry as earlier in this paper, with this difference that 
the wave vector has a component ky in the y-direction. We have 

For the first-order current density we now obtain the following expression: 
El,  Bt a exp(ikyy). (45)  

x lm dt' [ F E ,  (x ( t ' ) ,  f') p(t) exp{ikyy(t')] + ;h'(X) exp(ikyy(t')) 

x E1 ( ~ ( t ' ) ,  t ' )  + - "(") A BI (x ( t ' ) ,  t') 1 . eY] (46)  \ Y 
where the relation between x ,  y and x( t ' ) ,  y( t ' )  is given by 

C I  C I  

Y I' Y I' 
x(t ' )  = x - - /" drp,(r) y( t ' )  = y - - / drpy(r) .  (47) 

We Fourier transform with respect to x and f and we introduce the dimensionless wavenumbers 
K ~ ,  K? given by ~i = ki L,  i = x ,  y. In this way we obtain 
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This expression is calculated in appendix A. In the case k, = 0 the expression for the current 
density reduces to that of section 3 (i.e. (26)). 
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Appendix A. Calculation of the current density 

In section 3 the following expression was obtained for the current density (i.e. (48)): 

x /"' dt'/" d 3 p o a  exp 
-m Y 

. C K i  - I- 1 drp,(z) - i 3  / ' d r p y ( r ) /  
Y I' Y L  1' 

(AI)  

F e  parameter K: is adummy variable. Further on in the present appendix we choose K: = K ~ . )  
By introducing the notations 

we define an integral 11 as follows: 

where J, is the Bessel function (Magnus et a1 1966) of the first kind and of order n. Consider 
now an integral /z given by 
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Assuming that Im w > 0 (causality condition) we have 

M J van Bruggen-KerWlof e t  a1 

= L d f ~ E ] ~ ( ~ ~ , f ' ) e x p ( i ~ ~ ~ )  x n n j y  -1 - w eup(-i(: -w)t'} 
m 

We also calculate 13, defined by 

The integral 13 is equal to 

Combining these results, we find 

in which f,'" is defined by 
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We split the expression for the current density into two parts; we write 

Both expressions can be calculated by considering derivatives of (A8) with respect to 
K ~ .  K;, K,., K;. In this way we obtain 



5516 

If k, = 0 this reduces to 
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Q.. 
- 

1J - 

0 

In order to obtain J Z )  we use the following results: 

. (A19) 

where Jo is the Bessel function (Magnus era/ 1966) of the first kind and of order zero and K I  
is the modified Bessel function (Magnus el al 1966) of the first kind and of order one. The 
relation between the Fourier transforms of the functions h and no is calculated in the following 
way: 
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Using the recurrence relation for the modified Bessel function (Magnus et al 1966) of the 
second kind 

(-423) d 
fi -{z- 'Kl(z)}i=z = -z-'Kz(z) 

we have 

With the help of these results we find after some algebra 
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In the case of ky = 0, .I:*) c 0 and 

Appendix B. Some properties of the relativistic dispersion function Fp 

The relativistic dispersion function Fq defined by (see Bomatici and Ruffina 1988) 

has proven to be very useful for the mathematical description of relativistic plasmas. Therefore 
some properties of these functions are given here. Other aspects of the relativistic dispersion 
function may be found in the literature (Trubnikov and Bazhanova 1959, Shkarofsky 1966, 
Jacquinot and Leloup 1971, Shkarofsky 1986, Robinson 1987, Sazhin and Temme 1990). 
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BI. Analyticio 

The function Fq is analytic in the complex or-plane except for the branch-cut Jm 01 = 0, 
R e a  2 I. 

82. Recurrence relation 

The functions Fq satisfy the following recurrence relation: 

where K, is a modified Bessel function (Magnus et all966) of the second kind and of order v. 

which proves (BZ), 
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An alternative integral representation for the function Fq(fi, 01) may be obtained by replacing 
the factor [ x  + @(I - a)]-' in (86) by -iJ;dt exp[i[x + @ ( I  - 01))tI and exchanging the 
integration order. Thus it is found that 

expIip(1 -01)t) 
(1 - ir)9 

F,(fi,01) = - i l  dt 

which is known as the Dnestrovskii function (see Dnestrovskii et al 1964). 
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